کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1992474 | 1541043 | 2010 | 4 صفحه PDF | دانلود رایگان |

Radiotherapy is one of the curative treatment options for prostate cancer (PCa). However, effective doses of ionizing radiation (IR) have a high risk of side effects. To increase sensitivity of PCa to IR we pretreated human androgen-refractory DU145 PCa cells with a combination of sodium valproate (VPA), a well-tolerated drug with histone deacetylases inhibiting activity, and 1,25-dihydroxyvitamin D3, 1,25(OH)2D3, the active metabolite of vitamin D, a well known anticancer agent. The results show that irradiation (4 Gy) of DU145 PCa cells pretreated with a combination of 1 mM VPA and 100 nM 1,25(OH)2D3 efficiently suppressed (87.9%) PCa cell proliferation. IR after combined pretreatment resulted in increased DNA double-strand breaks expressed as levels of phosphorylated histone H2A.X, compared with non-treated cells the increase was 58.1% in pretreated cells and 11.8% in non-pretreated cells (p < 0.002). Combined pretreatment enhanced IR-induced activation of DNA damage checkpoint kinase Chk2, 39.0% in pretreated cells compared to 23.8% in non-pretreated cells (p < 0.05). These molecular changes led to DNA replication blockade, S-phase cell-cycle arrest and enhanced apoptosis. Cumulatively, the results indicate that combined pretreatment with VPA and 1,25(OH)2D3 followed by IR is a highly effective treatment for human PCa cells. This observation may have important implications for reducing doses of radiation administered to cancer patients thus limiting the severity of side effects.
Journal: The Journal of Steroid Biochemistry and Molecular Biology - Volume 121, Issues 1–2, July 2010, Pages 391–394