کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1993310 1541253 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Benchmarking methods and data sets for ligand enrichment assessment in virtual screening
ترجمه فارسی عنوان
روش های بهینه سازی و مجموعه داده ها برای ارزیابی غنی سازی لیگاند در غربالگری مجازی
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
چکیده انگلیسی

Retrospective small-scale virtual screening (VS) based on benchmarking data sets has been widely used to estimate ligand enrichments of VS approaches in the prospective (i.e. real-world) efforts. However, the intrinsic differences of benchmarking sets to the real screening chemical libraries can cause biased assessment. Herein, we summarize the history of benchmarking methods as well as data sets and highlight three main types of biases found in benchmarking sets, i.e. “analogue bias”, “artificial enrichment” and “false negative”. In addition, we introduce our recent algorithm to build maximum-unbiased benchmarking sets applicable to both ligand-based and structure-based VS approaches, and its implementations to three important human histone deacetylases (HDACs) isoforms, i.e. HDAC1, HDAC6 and HDAC8. The leave-one-out cross-validation (LOO CV) demonstrates that the benchmarking sets built by our algorithm are maximum-unbiased as measured by property matching, ROC curves and AUCs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Methods - Volume 71, 1 January 2015, Pages 146–157
نویسندگان
, , , , ,