کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1997877 | 1065624 | 2008 | 12 صفحه PDF | دانلود رایگان |

SummarySaccharomyces cerevisiae Srs2 helicase was shown to displace Rad51 in vitro upon translocation on single-stranded DNA. This activity is sufficient to account for its antirecombination effect and for the elimination of otherwise dead-end recombination intermediates. Roles for the helicase activity are yet unknown. Because cells lacking Srs2 show increased incidence of mitotic crossovers, it was postulated that Srs2 promotes synthesis-dependent strand annealing (SDSA) by unwinding the elongating invading strand from the donor strand. We report here that synthetic DNA structures that mimic D loops are good substrates for the Srs2 helicase activity, that Srs2 translocates on RPA-coated ssDNA, and, furthermore, that the helicase activity is largely stimulated by the presence of Rad51 nucleoprotein filaments on double-stranded DNA. These properties strongly support the idea that Srs2 actively prevents crossovers by promoting SDSA.
Journal: - Volume 29, Issue 2, 1 February 2008, Pages 243–254