کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
200812 460518 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Phase behavior of the CO2–H2O system at temperatures of 273–623 K and pressures of 0.1–200 MPa using Peng-Robinson-Stryjek-Vera equation of state with a modified Wong-Sandler mixing rule: An extension to the CO2–CH4–H2O system
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Phase behavior of the CO2–H2O system at temperatures of 273–623 K and pressures of 0.1–200 MPa using Peng-Robinson-Stryjek-Vera equation of state with a modified Wong-Sandler mixing rule: An extension to the CO2–CH4–H2O system
چکیده انگلیسی

We modified the binary interaction parameter in Wong-Sandler mixing rule for cubic EOS as a two-parameter linear function of composition. We then incorporated the Non-Random-Two-Liquid excess Gibbs energy model into the modified Wong-Sandler mixing rule to correlate the phase boundaries of the CO2–H2O system through the ϕ−ϕ approach by using Peng–Robinson-Stryjek-Vera equation of state. The proposed EOS/Gex model has four adjustable temperature-dependent parameters for polar molecules; and it can be reduced smoothly to the van der Waal one-fluid mixing rule with only one binary interaction parameter for hydrocarbon systems. An excellent result was obtained when compared the modeling results with a large amount of the vapor–liquid equilibria experimental data (more than 1300 experimental data points located in a P-T region of 273–623 K and 0.1–200 MPa) for the CO2–H2O system. The average absolute deviations (AAD%) of modeling results from experimental data (mutual solubilities of CO2 and H2O) are less than 7.5% for both phases. In addition, the proposed model can be easily extended to a multi-component system on condition that the binary interaction parameters of each binary pair in the multi-component system are known. We provided a calculation example for the ternary CO2–CH4–H2O system and found that the modeling result agrees very well with experimental data for this ternary system.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fluid Phase Equilibria - Volume 417, 15 June 2016, Pages 96–108
نویسندگان
, ,