کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2014824 1541941 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
SnRK1 is differentially regulated in the cotyledon and embryo axe of bean (Phaseolus vulgaris L) seeds
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش گیاه شناسی
پیش نمایش صفحه اول مقاله
SnRK1 is differentially regulated in the cotyledon and embryo axe of bean (Phaseolus vulgaris L) seeds
چکیده انگلیسی


• SnRK1 activity peaks just before the accumulation of starch starts.
• SnRK1 complex is different in cotyledon and embryo axe of bean seed.
• Embryo axe SnRK1 is less sensitive to the inhibition by trehalose 6-P.

SnRK1 activity is developmentally regulated in bean seeds and exhibits a transient increase with the highest value at 20 days after anthesis (DAA), which coincides with the beginning of protein and starch accumulation. The catalytic subunit of SnRK1 shows a consistent decrease throughout the seed development period. However, by 15 DAA a significant proportion of the catalytic subunit appears phosphorylated. The increase in activity and phosphorylation of the catalytic subunit coincides with a decrease in hexoses. However, SnRK1 activity is differentially regulated in the cotyledon and embryo axe, where a larger proportion of the catalytic subunit is phosphorylated. SnRK1 obtained from endosperm extract is inhibited by T6P and to a lesser extent by ADPG and UDPG, whereas the enzyme isolated from embryo is virtually insensitive to T6P but exhibits some inhibition by ADPG and UDPG. In cotyledon extracts, the effects of T6P and ADPG on SnRK1 activity are additive, whereas in embryo extract, T6P inhibits the enzyme only when ADPG is present. After fractionation on Sephacryl-S300, SnRK1 activity obtained from cotyledon extracts is detected as a single peak associated with a molecular weight of 250 kDa whereas that obtained form embryo axe extracts detected as 2 peaks associated with molecular weight of 250 and 180 kDa. In both cases, the catalytic subunit exhibits a wide distribution but is concentrated in the fractions with the highest activity. To analyse the composition of the complex, cotyledon and embryo extracts were treated with a reversible crosslinker (DSP). DSP induced the formation of complexes with molecular weights of 97 and 180 kDa in the cotyledon and embryo extracts, respectively. Since all the phosphorylated catalytic subunit is present in the complexes induced by DSP, it appears that the phosphorylation favors its interaction with other proteins.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Plant Physiology and Biochemistry - Volume 80, July 2014, Pages 153–159
نویسندگان
, ,