کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2020951 1069218 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regulation of protein multipoint adsorption on ion-exchange adsorbent and its application to the purification of macromolecules
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Regulation of protein multipoint adsorption on ion-exchange adsorbent and its application to the purification of macromolecules
چکیده انگلیسی

Ion-exchange chromatography (IEC) using commercial ionic absorbents is a widely used technique for protein purification. Protein adsorption onto ion-exchange adsorbents often involves a multipoint adsorption. In IEC of multimeric proteins or “soft” proteins, the intense multipoint binding would make the further desorption difficult, even lead to the destruction of protein structure and the loss of its biological activity. In this paper, DEAE Sepharose FF adsorbents with controllable ligand densities from 0.020 to 0.183 mmol/ml were synthesized, and then the effect of ligand density on the static ion-exchange adsorption of bovine serum albumin (BSA) onto DEAE Sepharose FF was studied by batch adsorption technique. Steric mass-action (SMA) model was employed to analyze the static adsorption behavior. The results showed that the SMA model parameters, equilibrium constant (Ka), characteristic number of binding sites (υ) and steric factor (σ), increased gradually with ligand density. Thus, it was feasible to regulate BSA multipoint adsorption by modulating the ligand density of ion-exchange adsorbent. Furthermore, IEC of hepatitis B surface antigen (HBsAg) using DEAE Sepharose FF adsorbents with different ligand densities was carried out, and the activity recovery of HBsAg was improved from 42% to 67% when the ligand density was decreased from 0.183 to 0.020 mmol/ml. Taking the activity recovery of HBsAg, the purification factor and the binding capacity into account, DEAE Sepharose FF with a ligand density of 0.041 mmol/ml was most effective for the purification of HBsAg. Such a strategy may also be beneficial for the purification of macromolecules and multimeric proteins.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Protein Expression and Purification - Volume 74, Issue 2, December 2010, Pages 257–263
نویسندگان
, , , , ,