کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2025609 1070004 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nitrifier dominance of Arctic soil nitrous oxide emissions arises due to fungal competition with denitrifiers for nitrate
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Nitrifier dominance of Arctic soil nitrous oxide emissions arises due to fungal competition with denitrifiers for nitrate
چکیده انگلیسی

Arctic soils emit nitrous oxide, which is a potent greenhouse gas and also represents an important loss of nitrogen to oligotrophic Arctic ecosystems. However, little is known about the temperature sensitivity of nitrous oxide release in Arctic soils or the organisms mainly responsible for it. We investigated controls on nitrous oxide emissions in an Arctic soil across a typical temperature range (between 4 and 13 °C) on Truelove Lowland, Devon Island, Canada (75°40′N 84°35′W) at two different moisture contents. When fertilized with ammonia or nitrate, nitrous oxide emissions and temperature dependence of nitrous oxide emissions were insensitive to soil moisture content but linked to nitrification rates. Stable isotope analysis revealed that nitrous oxide was predominantly released by nitrifiers. However, nitrous oxide emissions were not linked to nitrifier prevalence with an insignificant (P < 0.219) increase in amoA genes and a (P < 0.01) decrease in archaeal nitrifiers. In contrast, denitrifier nosZ prevalence was 10,000 times greater than that of nitrifiers and was related to nitrous oxide emission potential when soils were fertilized with nitrate. Manipulating water-filled pore space should have changed the pattern of N2O emissions. We used selective inhibitors to further explore why denitrification did not occur under field conditions when we manipulated water-filled pore space or when we used 15N analysis. When fungi were inhibited in the soil, nitrous oxide emissions from denitrifiers increased with no change in nitrous oxide released by nitrifiers. When fungi were active in the soil, there was little available nitrate but when fungi were inhibited, available soil nitrate increased over the incubation period. The dominance of nitrifiers in nitrous oxide emissions from Arctic soils under field conditions is linked to the competition for nitrate between fungi and denitrifiers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 41, Issue 6, June 2009, Pages 1104–1110
نویسندگان
, , , ,