کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2027846 | 1542726 | 2014 | 7 صفحه PDF | دانلود رایگان |

1α,25-Dihydroxy vitamin D3 [1α,25(OH)2D3] acts on cells via classical steroid hormone receptor-mediated gene transcription and by initiating rapid membrane-mediated signaling pathways. Two receptors have been implicated to play roles in 1α,25(OH)2D3 mediated rapid signaling, the classical nuclear vitamin D receptor (VDR) and protein disulfide isomerase, family A, member 3 (Pdia3). Long term efforts to investigate the roles of these two receptors demonstrated thatPdia3 is located in caveolae, where it interacts with phospholipase A2 (PLA2) activating protein (PLAA) and caveolin-1 (Cav-1) to initiate rapid signaling via Ca++/calmodulin-dependent protein kinase II (CaMKII), PLA2, phospholipase C (PLC), protein kinase C (PKC), and ultimately the ERK1/2 family of mitogen activated protein kinases (MAPK). VDR is present on the plasma membrane, and it is required for 1α,25(OH)2D3 induced rapid activation of Src. PDIA3+/− mice demonstrate an impaired musculoskeletal phenotype. Moreover, our studies examining mineralization of pre-osteoblasts in 3D culture have shown the physiological importance of Pdia3 and VDR interaction: knockdown of Pdia3 or VDR is characterized by impaired mineralization of the constructs.
Journal: Steroids - Volume 81, March 2014, Pages 81–87