کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2029911 | 1070992 | 2012 | 11 صفحه PDF | دانلود رایگان |

SummaryThe switch between an inactive and active conformation is an important transition for signaling proteins, yet the mechanisms underlying such switches are not clearly understood. Escherichia coli CheY, a response regulator protein from the two-component signal transduction system that regulates bacterial chemotaxis, is an ideal protein for the study of allosteric mechanisms. By using 15N CPMG relaxation dispersion experiments, we monitored the inherent dynamic switching of unphosphorylated CheY. We show that CheY does not undergo a two-state concerted switch between the inactive and active conformations. Interestingly, partial saturation of Mg2+ enhances the intrinsic allosteric motions. Taken together with chemical shift perturbations, these data indicate that the μs-ms timescale motions underlying CheY allostery are segmental in nature. We propose an expanded allosteric network of residues, including W58, that undergo asynchronous, local switching between inactive and active-like conformations as the primary basis for the allosteric mechanism.
Graphical AbstractFigure optionsDownload high-quality image (239 K)Download as PowerPoint slideHighlights
► NMR dynamics data reveal CheY does not undergo concerted, two-state switching
► Asynchronous, local switching of a network of residues facilitates CheY activation
► Mg2+ enhances the dynamics associated with the inactive-to-active transition
Journal: - Volume 20, Issue 8, 8 August 2012, Pages 1363–1373