کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2030311 1071070 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrophobic Potential of Mean Force as a Solvation Function for Protein Structure Prediction
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Hydrophobic Potential of Mean Force as a Solvation Function for Protein Structure Prediction
چکیده انگلیسی

SummaryWe have developed a solvation function that combines a Generalized Born model for polarization of protein charge by the high dielectric solvent, with a hydrophobic potential of mean force (HPMF) as a model for hydrophobic interaction, to aid in the discrimination of native structures from other misfolded states in protein structure prediction. We find that our energy function outperforms other reported scoring functions in terms of correct native ranking for 91% of proteins and low Z scores for a variety of decoy sets, including the challenging Rosetta decoys. This work shows that the stabilizing effect of hydrophobic exposure to aqueous solvent that defines the HPMF hydration physics is an apparent improvement over solvent-accessible surface area models that penalize hydrophobic exposure. Decoys generated by thermal sampling around the native-state basin reveal a potentially important role for side-chain entropy in the future development of even more accurate free energy surfaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: - Volume 15, Issue 6, 13 June 2007, Pages 727–740
نویسندگان
, , ,