کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2051424 1074200 2005 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of siRNA functionality using generalized string kernel and support vector machine
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش گیاه شناسی
پیش نمایش صفحه اول مقاله
Prediction of siRNA functionality using generalized string kernel and support vector machine
چکیده انگلیسی

Small interfering RNAs (siRNAs) are becoming widely used for sequence-specific gene silencing in mammalian cells, but designing an effective siRNA is still a challenging task. In this study, we developed an algorithm for predicting siRNA functionality by using generalized string kernel (GSK) combined with support vector machine (SVM). With GSK, siRNA sequences were represented as vectors in a multi-dimensional feature space according to the numbers of subsequences in each siRNA, and subsequently classified with SVM into effective or ineffective siRNAs. We applied this algorithm to published siRNAs, and could classify effective and ineffective siRNAs with 90.6%, 86.2% accuracy, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: FEBS Letters - Volume 579, Issue 13, 23 May 2005, Pages 2878–2882
نویسندگان
, , , ,