کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2057050 1075859 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Responses of enzymatic antioxidants and non-enzymatic antioxidants in the cyanobacterium Microcystis aeruginosa to the allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis)
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
پیش نمایش صفحه اول مقاله
Responses of enzymatic antioxidants and non-enzymatic antioxidants in the cyanobacterium Microcystis aeruginosa to the allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis)
چکیده انگلیسی

SummaryMacrophytic allelochemicals are considered an environment-friendly and promising alternative to control algal bloom. However, studies examining the potential mechanisms of inhibitory allelochemicals on algae are few. The allelochemical ethyl 2-methyl acetoacetate (EMA), isolated from reed (Phragmites communis), was a strong allelopathic inhibitor on the growth of Microcystis aeruginosa. EMA-induced antioxidant responses were investigated in the cyanobacterium M. aeruginosa to understand the mechanism of EMA inhibition on algal growth. The activities of enzymatic antioxidants superoxide dismutase (SOD) and catalase (CAT), and the contents of non-enzymatic antioxidants reduced glutathione (GSH) and ascorbic acid (AsA) of M. aeruginosa cells were analyzed after treatments with different concentrations of EMA. Exposure of M. aeruginosa to EMA caused changes in enzyme activities and contents of non-enzymatic antioxidants in different manners. The decrease in SOD activity occurred first after 4 h of EMA exposure, and more markedly after 40 h. CAT activity did not change after 4 h of EMA exposure, but increased obviously after 40 h. The contents of AsA and GSH were increased greatly by EMA after 4 h. After 60 h, low EMA concentrations still increased the CAT activity and the contents of AsA and GSH, but high EMA concentrations started to impose a marked suppression on them. EMA increased dehydroascorbate (DHAsA) and oxidized glutathione (GSSG) contents during all exposure times. After 60 h, the regeneration rates of AsA and GSH (represented by the AsA/DHAsA ratio and GSH/GSSG ratio, respectively) were reduced by high EMA concentrations. These results suggest that the activation of CAT and the availability of AsA and GSH at early exposure are important to counteract the oxidative stress induced by EMA, and the inactivation of SOD may be crucial to the growth inhibition of M. aeruginosa by EMA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Plant Physiology - Volume 165, Issue 12, 25 August 2008, Pages 1264–1273
نویسندگان
, , , ,