کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2076383 1079441 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stochastic models for inferring genetic regulation from microarray gene expression data
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات مدل‌سازی و شبیه سازی
پیش نمایش صفحه اول مقاله
Stochastic models for inferring genetic regulation from microarray gene expression data
چکیده انگلیسی

Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosystems - Volume 99, Issue 3, March 2010, Pages 192–200
نویسندگان
,