کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2076783 1079464 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
QSAR using evolved neural networks for the inhibition of mutant PfDHFR by pyrimethamine derivatives
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات مدل‌سازی و شبیه سازی
پیش نمایش صفحه اول مقاله
QSAR using evolved neural networks for the inhibition of mutant PfDHFR by pyrimethamine derivatives
چکیده انگلیسی

Quantitative structure–activity relationship (QSAR) models were developed for dihydrofolate reductase (DHFR) inhibition by pyrimethamine derivatives using small molecule descriptors derived from MOE and/or QikProp and linear or nonlinear modeling. During this analysis, the best QSAR models were identified when using MOE descriptors and nonlinear models (artificial neural networks) optimized by evolutionary computation. The resulting models can be used to identify key descriptors for DHFR inhibition and are useful for high-throughput screening of novel drug leads.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosystems - Volume 92, Issue 1, April 2008, Pages 10–15
نویسندگان
, , ,