کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2085196 1545407 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparison of the effectiveness of cationic polymers poly-l-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC)
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیوتکنولوژی یا زیست‌فناوری
پیش نمایش صفحه اول مقاله
A comparison of the effectiveness of cationic polymers poly-l-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC)
چکیده انگلیسی

Bone marrow stromal cells (BMSC) represent an important cell phenotype for pursuit of successful gene therapy. Non-viral methods to enable expression of exogenous genes in BMSC will accelerate clinical application of gene therapy, without the concerns associated with the viral means of gene transfer. Towards this end, this study investigated the potential of cationic polymers poly-l-lysine (PLL) and branched polyethylenimine (PEI) as gene carriers for modification of BMSC. Both polymers rapidly (∼30 min) condensed a 4.2 kb Enhanced Green Fluorescent Protein (pEGFP-N2) plasmid into 100–200 nm particles. PLL and PEI were both readily internalized with BMSC with >80% of BMSC exhibiting polymer uptake by flow cytometric analysis. The relative uptake of PEI, however, was significantly higher as compared to the PLL. The majority of the BMSC (>60%) exhibited nuclear presence of the polymers as analyzed by fluorescent microscopy. Although both polymers were able to deliver the pEGFP-N2 into the cells under microscopic evaluation, only a small fraction of the cells (<10%) displayed nuclear localization of the plasmid. Consistent with better uptake, PEI gave a higher delivery of pEGFP-N2 into the BMSC, which resulted in a more sustained expression of the model gene EGFP in short-term (7-day) culture. We conclude that both PLL and PEI readily displayed cellular uptake, but PEI was more effective in delivering plasmid DNA intracellularly, which was likely the underlying basis for a more sustained gene expression.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Pharmaceutics and Biopharmaceutics - Volume 65, Issue 3, March 2007, Pages 388–397
نویسندگان
, , , , , ,