کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2089772 | 1545925 | 2015 | 4 صفحه PDF | دانلود رایگان |

• We have modified and improved current signalling molecule (AHL) detection strategies.
• A new method of visualizing the GFP based biosensor for the purpose of TLC is presented.
• This new method vastly improves sensitivity of AHL detection by a GFP biosensor.
Many microorganisms use quorum sensing to regulate several complex phenotypes, and this is accomplished by the release of a signal molecule(s) into the environment. N-acyl-homoserine lactones (AHLs) are a common class of signalling molecule utilized by a range of microorganisms (primarily Gram negative bacteria but most recently also archaea) and are often detected through the use of bacterial biosensors. Biosensors can be limited by both their specificity and sensitivity, and the aim of this study was to modify and improve current AHL detection strategies. The biosensor employed in the present study was Escherichia coli MT102 harbouring a plasmid containing a LuxR based biosensor, which produces green fluorescent protein (GFP) as a reporting mechanism. A new method of visualizing the GFP based biosensor overlaid on silica sheets for the purpose of thin-layer chromatography (TLC) is presented. This new method vastly improves sensitivity of AHL detection by a GFP biosensor than previously reported and as such represents a powerful new tool in AHL research.
Journal: Journal of Microbiological Methods - Volume 118, November 2015, Pages 164–167