کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2089984 | 1545939 | 2014 | 4 صفحه PDF | دانلود رایگان |

• RealAmp is an alternative for detection of MTB in developing countries.
• RealAmp can be used as a tool to validate culture and smear negative samples.
• RealAmp is highly efficient and minimized the total detection time to less than 30 min.
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) leads to serious health problems as a chronic respiratory infectious disease. Here we established a real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) using a portable ESE Quant tube scanner as a convenient rapid detection method for MTB. The method efficacy from sputum samples was further investigated, and the reaction time was only 20 min with the detection limit low to 102 CFU/ml concentration of MTB. We assessed a total of 1067 samples by the RealAmp assay, comparing the results with smear microscopy and conventional culture methods. To examine whether the failure to detect TB by culturing is due to low sensitivity or true absence, we examined the culture negative samples by commercial real time PCR MTB detection kit, and the results were compared with RealAmp. The data showed that RealAmp assay had a higher positive rate than that of sputum smear and culture methods. RealAmp had a sensitivity of 96.70% and a specificity of 91.55% when compared with culture. In addition, its sensitivity and specificity were 95.29% and 86.88% respectively compared with examination of smear samples using light microscopy. The sensitivity of RealAmp in comparison to real time PCR was 98.25% and specificity was 99.11% in validation of culture negative samples.The present study revealed the newly established RealAmp assay as a convenient, efficient, sensitive and specific method that could be an alternative for rapid detection of MTB and a tool to validate culture and smear negative samples. Furthermore, the portability of the ESE Quant tube scanner also contributed to the promising application for grassroots and field detection of MTB.
Journal: Journal of Microbiological Methods - Volume 104, September 2014, Pages 55–58