کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2092987 1546001 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria
ترجمه فارسی عنوان
تولید 1،3-پروپانیدیول توسط اشرشیا کولی جدید حاوی ژن نوترکیب باکتری های بیماریزا
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیوتکنولوژی یا زیست‌فناوری
چکیده انگلیسی

1,3-Propanediol (1,3-PDO) is an organic compound, which is a valuable intermediate product, widely used as a monomer for synthesizing biodegradable polymers, increasing their strength; as well as an ingredient of textile, cosmetic and medical products. 1,3-PDO is mostly synthesized chemically. Global companies have developed technologies for 1,3-PDO synthesis from petroleum products such as acrolein and ethylene oxide. A potentially viable alternative is offered by biotechnological processes using microorganisms capable of synthesizing 1,3-PDO from renewable substrates (waste glycerol, a by-product of biofuel production, or glucose). In the present study, genes from Citrobacter freundii and Klebsiella pneumoniae were introduced into Escherichia coli bacteria to enable the synthesis of 1,3-PDO from waste glycerol. These strains belong to the best 1,3-PDO producers, but they are pathogenic, which restricts their application in industrial processes. The present study involved the construction of two gene expression constructs, containing a total of six heterologous glycerol catabolism pathway genes from C. freundii ATCC 8090 and K. pneumoniae ATCC 700721.Heterologous genes encoding glycerol dehydratase (dhaBCE) and the glycerol dehydratase reactivation factor (dhaF, dhaG) from C. freundii and gene encoding 1,3-PDO oxidoreductase (dhaT) from K. pneumoniae were expressed in E. coli under the control of the T7lac promoter. An RT-PCR analysis and overexpression confirmed that 1,3-PDO synthesis pathway genes were expressed on the RNA and protein levels. In batch fermentation, recombinant E. coli bacteria used 32.6 g l−1 of glycerol to produce 10.6 g l−1 of 1,3-PDO, attaining the efficiency of 0.4 (mol1,3-PDO molglycerol−1). The recombinant E. coli created is capable of metabolizing glycerol to produce 1,3-PDO, and the efficiency achieved provides a significant research potential of the bacterium. In the face of shortage of fossil fuel supplies and climate warming there is an increasing industrial need to exchange the chemical way of chemicals synthesis for biotechnological – more ecological manner. The 1,3-PDO production from glycerol is an desirable alternative to the traditional production from non-renewable resources. This work is a part of project, which opens a way to development of innovative “green chemistry” and new perspectives to chemical industry.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microbiological Research - Volume 171, February 2015, Pages 1–7
نویسندگان
, , , , , ,