کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2166516 | 1091862 | 2009 | 10 صفحه PDF | دانلود رایگان |

The regulation of intracellular Ca2+ signalling by phosphorylation processes remains poorly defined, particularly with regards to tyrosine phosphorylation. Evidence from non-excitable cells implicates tyrosine phosphorylation in the activation of so-called store-operated Ca2+ channels (SOCCs), but their involvement in neuronal Ca2+ signalling is still elusive.In the present study, we determined the role of protein tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs) in the coupling between intracellular Ca2+ stores and SOCCs in neonatal rat hippocampal neurons by Fura-2 Ca2+ imaging. An early Ca2+ response from intracellular stores was triggered with thapsigargin, and followed by a secondary plasma membrane Ca2+ response. This phase was blocked by the non-specific Ca2+ channel blocker NiCl and the SOCC blocker, 2-aminoethoxydiphenyl borate (2-APB). Interestingly, two structurally distinct PTK inhibitors, genistein and AG126, also inhibited this secondary response.Application of the PTP inhibitor sodium orthovanadate (OV) also activated a sustained and tyrosine kinase dependent Ca2+ response, blocked by NiCl and 2-APB. In addition, OV resulted in a Ca2+ store dependent enhancement of NMDA responses, corresponding to, and occluding the signalling pathway for group I metabotropic glutamate receptors (mGluRs). This study provides first evidence for tyrosine based phospho-regulation of SOCCs and NMDA signalling in neurons.
Journal: Cell Calcium - Volume 46, Issue 1, July 2009, Pages 39–48