کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
216967 | 1426288 | 2010 | 5 صفحه PDF | دانلود رایگان |

In this work, isobaric (vapour + liquid) equilibrium data have been determined at (53.3 and 91.3) kPa for the binary mixtures of (1-propanol + 1-butanol). The thermodynamic consistency of the experimental values was checked by means the traditional area test and the direct test methods. According to the criteria for the test methods, the (vapour + liquid) equilibrium results were found to be thermodynamically consistent. The experimental values obtained were correlated by using the van Laar, Margules, Wilson, NRTL, and UNIQUAC activity-coefficient models. The binary interaction parameters of the activity-coefficient models have been determined and reported. They have been compared with those calculated by the activity-coefficient models. The average absolute deviation in boiling point and vapour-phase composition were determined. The calculated maximum average absolute deviations were 0.86 K and 0.0151 for the boiling point and vapour-phase composition, respectively. Therefore, it was shown that the activity-coefficient models used satisfactorily correlate the (vapour + liquid) equilibrium results of the mixture studied. However, the performance of the UNIQUAC model was superior to all other models mentioned.
Journal: The Journal of Chemical Thermodynamics - Volume 42, Issue 6, June 2010, Pages 792–796