کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2172162 | 1093525 | 2010 | 16 صفحه PDF | دانلود رایگان |

Background aimsThe suppression of cell apoptosis using a biodegradable scaffold to replace the missing or altered extracellular matrix (ECM) could increase the survival of transplanted cells and thus increase the effectiveness of cell therapy.MethodsWe studied the best conditions for the proliferation and differentiation of human bone marrow stromal cells (hBMSC) when cultured on different biologic scaffolds derived from fibrin and blood plasma, and analyzed the best concentrations of fibrinogen, thrombin and calcium chloride for favoring cell survival. The induction of neural differentiation of hBMSC was done by adding to these scaffolds different growth factors, such as nerve growth factor (NGF), brain-derived-neurotrophic factor (BDNF) and retinoic acid (RA), at concentrations of 100 ng/mL (NGF and BDNF) and 1 μ/mL (RA), over 7 days.ResultsAlthough both types of scaffold allowed survival and neural differentiation of hBMSC, the results showed a clear superiority of platelet-rich plasma (PRP) scaffolds, mainly after BDNF administration, allowing most of the hBMSC to survive and differentiate into a neural phenotype.ConclusionsGiven that clinical trials for spinal cord injury using hBMSC are starting, these findings may have important clinical applications.
Journal: Cytotherapy - Volume 12, Issue 4, July 2010, Pages 522–537