کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2175526 1093844 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A cell-autonomous requirement for Cip/Kip cyclin-kinase inhibitors in regulating neuronal cell cycle exit but not differentiation in the developing spinal cord
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
A cell-autonomous requirement for Cip/Kip cyclin-kinase inhibitors in regulating neuronal cell cycle exit but not differentiation in the developing spinal cord
چکیده انگلیسی

Control over cell cycle exit is fundamental to the normal generation of the wide array of distinct cell types that comprise the mature vertebrate CNS. Here, we demonstrate a critical role for Cip/Kip class cyclin-kinase inhibitory (CKI) proteins in regulating this process during neurogenesis in the embryonic spinal cord. Using immunohistochemistry, we show that all three identified Cip/Kip CKI proteins are expressed in both distinct and overlapping populations of nascent and post-mitotic neurons during early neurogenesis, with p27Kip1 having the broadest expression, and both p57Kip2 and p21Cip1 showing transient expression in restricted populations. Loss- and gain-of-function approaches were used to establish the unique and redundant functions of these proteins in spinal cord neurogenesis. Using genetic lineage tracing, we provide evidence that, in the absence of p57, nascent neurons re-enter the cell cycle inappropriately but later exit to begin differentiation. Analysis of p57Kip2;p27Kip1 double mutants, where p21 expression is confined to only a small population of interneurons, demonstrates that Cip/Kip CKI-independent factors initiate progenitor cell cycle exit for the majority of interneurons generated in the developing spinal cord. Our studies indicate that p57 plays a critical cell-autonomous role in timing cell cycle exit at G1/S by opposing the activity of Cyclin D1, which promotes cell cycle progression. These studies support a multi-step model for neuronal progenitor cell cycle withdrawal that involves p57Kip2 in a central role opposing latent Cyclin D1 and other residual cell cycle promoting activities in progenitors targeted for differentiation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Developmental Biology - Volume 301, Issue 1, 1 January 2007, Pages 14–26
نویسندگان
, , ,