کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
218542 | 463206 | 2015 | 7 صفحه PDF | دانلود رایگان |

• PEDOT nanorods/GO nanocomposites were synthesized at liquid/liquid interface.
• The nanocomposites can be effectively used for the detection of rutin.
• Low detection limit with wide linear range could be obtained.
• The method was applied to determine rutin in real samples.
Hierarchical nanocomposites of poly(3,4-ethylenedioxythiophene) nanorods array on graphene oxide nanosheets (PEDOT/GO) were synthesized via a liquid–liquid interfacial polymerization method. The synthesized composites were characterized by using Fourier transform infrared (FTIR) and Raman spectroscopic studies, and their morphology was analyzed by transmission electron microscopy (TEM). Characterization and surface morphology results indicated that PEDOT with a nanorods-like structure successfully anchored on the surface of GO sheets, which could enhance the electro-active sites of the nanocomposites. Then the obtained PEDOT/GO nanocomposites were utilized to modify glassy carbon electrode and designed for the trace level sensing of rutin. Electrochemical results revealed that the PEDOT/GO nanocomposites modified electrode exhibited larger oxidation peak currents of rutin than pure PEDOT and GO owing to the synergistic effect of GO and PEDOT nanorods. Under optimized conditions, the anodic peak current was linear to the concentration of rutin in the range from 0.004 to 60 μM with the detection limit of 0.00125 μM. To further validate its possible application, the proposed method was successfully used for the determination of rutin in pharmaceutical formulations with satisfactory results.
Figure optionsDownload as PowerPoint slide
Journal: Journal of Electroanalytical Chemistry - Volume 739, 15 February 2015, Pages 66–72