کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
219959 | 463308 | 2010 | 5 صفحه PDF | دانلود رایگان |

The electrochemical behaviors of magnolol have been studied at glassy carbon electrode using cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Moreover, its interaction with DNA was investigated in solution by electrochemical methods and ultraviolet–visible spectroscopy. The experiment results indicated that the electrochemical oxidation of magnolol was an irreversible process with one proton and one electron transfer. The electron transfer coefficient (α) was calculated to be 0.441 ± 0.001. At the scan rate from 100 mV/s to 450 mV/s, the electrode process was controlled by the adsorption step and at the range of 600–950 mV/s the electrochemical oxidation was diffusion controlled process. The corresponding electrochemical rate constant (ks) was 0.0760 ± 0.0001 s−1. Through chronocoulometry experiment, the diffusion coefficient (D) and the surface concentration (Γ) were obtained as (3.76 ± 0.01) × 10−7 cm2/s and (2.98 ± 0.01) × 10−10 mol/cm2. In addition, the interaction of magnolol and DNA was ascribed to be electrostatic interaction and the calculated association constant (β) and Hill coefficient (m) were 1.14 × 105 M−1 and 0.973. At last a sensitive and convenient electrochemical method was proposed for the determination of magnolol.
Journal: Journal of Electroanalytical Chemistry - Volume 642, Issue 2, 15 April 2010, Pages 115–119