کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
233073 465321 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The role of citric acid in the flotation separation of rare earth from the silicates
ترجمه فارسی عنوان
نقش اسید سیتریک در جداسازی فلوراسیون زمین نادر از سیلیکات
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


• No effect of citric acid on the separation of REE from silicates without Al3+.
• The reduction of REE recovery caused by Al3+ was reduced by citric acid.
• Grains reporting to the tailings have less Al on their surface after citric acid addition.
• SiO2 species on the surface of the grains in the tailings with citric acid is diminished.

The Nechalacho project is the most advanced large heavy rare earth elements (HREE) project outside of China. Open circuit and locked cycle flotation tests along with pilot plant testing of rare earth elements (REE) concentration from the host rocks are accomplished with collectors of alkyl phosphates and the modifier of citric acid. In this study, the function of citric acid in the separation of rare metals against silicates is investigated by a combination of micro-flotation tests and time of flight secondary ion mass spectrometry (ToF-SIMS) surface chemical analysis. It was observed that there was little effect of citric acid on the REE recovery in the micro-flotation tests conditioned with de-ionized water (DIW). To evaluate the flotation response with excess secondary ions in the pulp, micro-flotation tests were performed to look at changes in recovery as a result of adding Al ions and the subsequent presence of citric acid. The results from three micro-flotation tests (DIW, DIW with the addition of 100 mg/L Al and DIW + 100 mg/L Al and 500 g/t citric acid) revealed that the addition of Al ions led to a decrease of REE grade, a lower REE minerals recovery and/or an unexpected promotion of silicates to the concentrate. Citric acid reduced the negative effect generated by the Al ions in the flotation, which was shown by an improvement in REE grade. ToF-SIMS surface analysis of undifferentiated grains from the tests with and without citric acid revealed that grains reporting to the concentrate are doing so in response to collector attachment in combination with having more secondary Al on their surface. Citric acid may partially form aqueous soluble metal–ligand complexes resulting in less Al ions on the grains surface, which were rejected to the tailings. Citric acid also may form chelation competing for adsorption on gangue minerals, resulting in a diminished effectiveness of the activation site.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Minerals Engineering - Volume 74, April 2015, Pages 123–129
نویسندگان
, , ,