کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
233708 465360 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Design of a dust tower for suppression of airborne particulates for iron making
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Design of a dust tower for suppression of airborne particulates for iron making
چکیده انگلیسی

Proper characterization of a dust suppressant represents a significant challenge. There has been confusion on what makes an effective dust suppressant. Many have argued that a dust suppressant must wet the material effectively and rapidly to control airborne dust. As a result, dust suppression studies have been heavily dependent upon laboratory wetting experiments such as contact angles, fine particle engulfment rates, and particle bed experiments to characterize dust suppressants. It has been believed that an effective dust suppressant should produce a low contact angle, and engulf particles rapidly thereby wetting the surface effectively and reducing airborne dust levels. However, these methods only characterize how the suppressant wets a given material, which does not directly correlate to the ability to suppress dust. Furthermore, a clear correlation between wetting enhancement and dust suppression has not been demonstrated. In order to address this gap, a novel dust tower was constructed which provided direct material dustiness measurements and allowed for a more realistic evaluation of dust suppressant effectiveness. This unit was able to clearly distinguish differences in dustiness that resulted from treatment of iron ore pellets with several different dust suppressant chemicals.

Figure optionsDownload as PowerPoint slideHighlights
► Evaluation of dust suppressants should not only examine wetting characteristics.
► This study developed a novel dust tower to evaluate dust suppressants.
► Hygroscopic reagents were effective at reducing PM10 and PM2.5 from iron ore.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Minerals Engineering - Volume 24, Issue 13, October 2011, Pages 1459–1466
نویسندگان
, ,