کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
240985 1427930 2005 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of combustible dust clouds on premixed flame extinction in normal- and micro-gravity
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Effects of combustible dust clouds on premixed flame extinction in normal- and micro-gravity
چکیده انگلیسی

An experimental and numerical study was carried out on the effects of combustible solid particles on the extinction of atmospheric, strained, laminar premixed methane/air, and propane/air flames in normal- and micro-gravity. The study was conducted in the opposed-jet configuration in which single flames were stabilized either below or above the gas stagnation plane by counter-flowing a reacting mixture against ambient-temperature air. Spherical 50-μm glassy-carbon and 32-μm Lycopodium particles were injected from either the mixture or the air sides, and the flame extinction states were experimentally determined. The results provided insight into the effects of fuel type, gas-phase composition, strain rate, gravity, as well as particle type, number density, and injection orientation. The combustible particles could have a negative or positive effect on the gas-phase reactivity, depending on the prevailing strain rate and the orientation of injection. The effect of combustible particles on flame extinction was found to reverse when the orientation of the particle seeding is reversed. Experiments and simulations revealed that particle reactions that are not possible in upstream seeding become possible in downstream seeding due to differences in particle residence times and prevailing temperature fields. The effects of gravity on the particle–gas interactions were identified and explained. Gravity could notably modify the chemical response of reacting particles, which, in turn, affects the extinction behavior of the gas phase.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Proceedings of the Combustion Institute - Volume 30, Issue 2, January 2005, Pages 2369–2377
نویسندگان
, , , ,