کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
241912 1362712 2016 11 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Data-driven train operation models based on data mining and driving experience for the diesel-electric locomotive
ترجمه فارسی عنوان
مدل های عملیات قطار داده محور بر اساس داده کاوی و تجربه رانندگی برای لوکوموتیو دیزلی الکتریکی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
فراگیری ماشین؛ آموزش مونتاژ؛ مدل عملیات قطار داده محور ؛ عملیات قطار خودکار ؛ رانندگی دستی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Traditional control methods in automatic train operation (ATO) models have some disadvantages, such as high energy consumption and low riding comfort. To alleviate these shortcomings of the ATO models, this paper presents three data-driven train operation (DTO) models from a new perspective that combines data mining methods with expert knowledge, since the manual driving by experienced drivers can achieve better performance than ATO model in some degree. Based on the experts knowledge that are summarized from experienced train drivers, three DTO models are developed by employing K-nearest neighbor (KNN) and ensemble learning methods, i.e., Bagging-CART (B-CART) and Adaboost.M1-CART (A-CART), into experts systems for train operation. Furthermore, the DTO models are improved via a heuristic train parking algorithm (HPA) to ensure the parking accuracy. With the field data in Chinese Dalian Rapid Rail Line 3 (DRRL3), the effectiveness of the DTO models are evaluated on a simulation platform, and the performance of the proposed DTO models are compared with both ATO and manual driving strategies. The results indicate that the developed DTO models obtain all the merits of the ATO models and the manual driving. That is, they are better than the ATO models in energy consumption and riding comfort, and also outperform the manual driving in stopping accuracy and punctuality. Additionally, the robustness of the proposed model is verified by a number of experiments with some steep gradients and complex speed limits.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advanced Engineering Informatics - Volume 30, Issue 3, August 2016, Pages 553–563
نویسندگان
, , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت