کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
242322 | 501819 | 2008 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Performance of KNN and SVM classifiers on full word Arabic articles
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper reports a comparative study of two machine learning methods on Arabic text categorization. Based on a collection of news articles as a training set, and another set of news articles as a testing set, we evaluated K nearest neighbor (KNN) algorithm, and support vector machines (SVM) algorithm. We used the full word features and considered the tf.idf as the weighting method for feature selection, and CHI statistics as a ranking metric. Experiments showed that both methods were of superior performance on the test corpus while SVM showed a better micro average F1 and prediction time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advanced Engineering Informatics - Volume 22, Issue 1, January 2008, Pages 106–111
Journal: Advanced Engineering Informatics - Volume 22, Issue 1, January 2008, Pages 106–111
نویسندگان
Ismail Hmeidi, Bilal Hawashin, Eyas El-Qawasmeh,