کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2428951 | 1106463 | 2015 | 11 صفحه PDF | دانلود رایگان |

• MAVS was characterized in the Chinese tree shrew.
• Tree shrew MAVS was both structurally and functionally conserved.
• Tree shrew MAVS had antiviral activity.
• Both the CARD and TM domains were essential for tree shrew MAVS signaling.
Human mitochondrial antiviral signaling protein (hMAVS, also known as IPS-1, VISA, or Cardif) is essential for antiviral innate immunity. The Chinese tree shrew (Tupaia belangeri chinenses), a close relative of primates, is emerging as a potential animal model for investigating viral infection. However, there is a lack of biological knowledge about the antiviral innate immunity of the tree shrew. In this study, we identified and characterized the function of the Chinese tree shrew MAVS gene (tMAVS). The cDNA of tMAVS was 2771 bp in length and encoded a polypeptide of 501 amino acids. Phylogenetic analyses based on the amino acid sequences revealed a closer affinity of tMAVS with those of primates. Quantitative real-time PCR analysis indicated that tMAVS mRNA was constitutively expressed in all seven tissues analyzed in this study. The tMAVS mRNA expression was rapidly and significantly increased after RNA virus infections. Ectopic-expression of tMAVS significantly potentiated the virus-triggered activation of IRF3, NF-κB and interferon-β (IFN-β), whereas knockdown of tMAVS displayed the opposite effect. Furthermore, tMAVS mutants lacking the caspase activation and recruitment (CARD) domains or the transmembrane (TM) domain were unable to induce IFN-β. Similar with hMAVS, mitochondrial localization of tMAVS was dependent on its domain. Collectively, this study revealed evolutionary conservation of the MAVS antiviral signaling pathway in the Chinese tree shrew.
Journal: Developmental & Comparative Immunology - Volume 52, Issue 1, September 2015, Pages 58–68