کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2482240 | 1556263 | 2009 | 14 صفحه PDF | دانلود رایگان |

Type 2 diabetes is one of the most widespread and rapidly spreading diseases world-wide and has been subject of extensive research efforts. However, understanding the molecular basis of the disease is increasing piecemeal and a consensus regarding the overall picture of normal metabolic regulation and malfunction in diabetes has not emerged. A systems biology approach, combining mathematical modelling with simultaneous high-throughput measurements, can be of considerable help. On the whole-body level, this has been done in pharmacokinetic and pharmacodynamic models, which recently have started to mature into more physiologically realistic organ-based models. At the other end of the spectrum, detailed models for crucial cellular processes are starting to mature into complete modules that potentially can be fitted into such whole-body organ-based models. The result of such a merge is a multi-level hierarchical model, which is a model type that has been common in technical systems. In this review, we report and exemplify some of the recent progress that has been made to achieve such a hierarchical model, and we argue why it is only through such a model that a complete picture of diabetes mellitus can be obtained.
Journal: European Journal of Pharmaceutical Sciences - Volume 36, Issue 1, 31 January 2009, Pages 91–104