کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2540265 | 1559756 | 2016 | 9 صفحه PDF | دانلود رایگان |

• TMHM-OAC alleviates inflammatory injury in lipopolysaccharide-induced acute tracheobronchitis.
• TMHM-OAC downregulated protein expression of TLR4.
• TMHM-OAC improves LPS-induced inflammatory injury through TLR4/NF-κB signaling pathway.
Inflammation plays an important role in the pathogenesis of acute tracheobronchitis. Taraxacum mongolicum Hand.-Mazz (TMHM) is a dietic herb for heat-clearing and detoxifying functions as well as swell-reducing and mass-resolving effect in Traditional Chinese Medicine. Studies have shown that its major ingredient organic acid component (OAC) possesses favorable anti-inflammatory activity. However, the protective effect of OAC from TMHM (TMHM-OAC) on inflammatory injury of acute tracheobronchitis and its possible mechanism remains poorly understood. In this study, HPLC-DAD was used to analyze the components of TMHM-OAC. Lipopolysaccharide of 1 mg/ml was used to induce respiratory inflammation in ICR mice at the dose of 5 mg/kg by intratracheally aerosol administration. Enzyme-linked immunosorbent assay (ELISA) was employed to detect the levels of inflammation factors such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide in serum and supernatant of trachea tissue. Western blotting (WB) and Immunohistochemistry analysis (IHC) were conducted in parallel to determine TNF-α, IL-6, inducible nitric oxide synthase (iNOS), Toll-like receptors 4(TLR4) protein expressions and nuclear factor-kappa B p65 (NF-κB p65) phosphorylation. Hematoxylin-Eosin staining (HE) was applied to evaluate pathological lesions of trachea tissue. Experimental results showed that TMHM-OAC significantly reduced the levels of the TNF-α, IL-6 and NO in serum and supernatant of tracheal of LPS-induced ICR mice. The protein expression levels of TNF-α, IL-6 and iNOS in tracheal tissue were also down-regulated significantly by the treatment of TMHM-OAC. Moreover, TMHM-OAC downregulated phosphorylation of NF-κB p65 and protein expression of TLR4. Our results indicated that TMHM-OAC could improve LPS-induced histopathological damage of tracheal tissues through the regulation of TLR4/NF-κB signaling pathway and could be beneficial for the treatment of acute tracheobronchitis.
Journal: International Immunopharmacology - Volume 34, May 2016, Pages 92–100