کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2540326 1559755 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Iguratimod (T-614) suppresses RANKL-induced osteoclast differentiation and migration in RAW264.7 cells via NF-κB and MAPK pathways
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی ایمونولوژی
پیش نمایش صفحه اول مقاله
Iguratimod (T-614) suppresses RANKL-induced osteoclast differentiation and migration in RAW264.7 cells via NF-κB and MAPK pathways
چکیده انگلیسی


• a directly inhibitory role of Iguratimod on osteoclast formation and function, which is distinct from previous report
• Iguratimod significantly inhibits osteoclast precursors migration induced by RANKL
• Iguratimod significantly inhibits osteoclastic related transcription factors of c-Fos, c-JUN and NFATc1

IntroductionIguratimod (T-614) has been confirmed as a highly efficacious and safe novel disease-modifying anti-rheumatic drug (DMARD) for rheumatoid arthritis therapy in China and Japan due to its potent anti-inflammation effect. Here, we investigate the effects of Iguratimod on osteoclast differentiation, migration and function.MethodsThe effect of Iguratimod on osteoclastogenesis, migration and bone resorption were assessed by TRAP staining, transwell migration assay and osteologic discs, respectively. Relative expressions of osteoclastic related genes, chemokines and transcription factors were assessed by reverse transcription polymerase chain reaction (RT-PCR) and signaling pathways were analyzed by western blotting.ResultsIguratimod significantly inhibits osteoclast differentiation, migration and bone resorption in RANKL-induced RAW264.7 cell in a dose-dependent manner. The expressions of osteoclastic related genes including TRAP, CTSK and CTR were increased in RAW264.7 cell upon RANKL stimulation but were obviously suppressed in the presence of Iguratimod. RANKL induced the expression of chemokines including CCL7, CCL4 and CCL12 and osteoclastic related transcription factors of c-Fos, c-Jun and NFATc1 could be significantly inhibited by Iguratimod in a dose dependent manner. Western blotting indicated Iguratimod could suppress the activation of MAPKs and NF-κB pathway in RANKL induced osteoclastogenesis in RAW264.7.ConclusionsThese findings revealed a directly inhibitory role of Iguratimod on osteoclast formation and function, which is distinct from previous report, suggesting Iguratimod provide a unique therapeutic strategy for RA and especially in light of preventing bone destruction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Immunopharmacology - Volume 35, June 2016, Pages 294–300
نویسندگان
, , , , , , , ,