کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
257901 503602 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Three-dimensional numerical modeling and simulation of the thermal properties of foamed concrete
ترجمه فارسی عنوان
مدل سازی عددی سه بعدی و شبیه سازی خواص حرارتی بتن فوم
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
چکیده انگلیسی


• A random generation method was extended from 2D to 3D.
• Finite volume method was used to solve the heat transfer equations.
• 3D effects on the effective thermal conductivity predictions were discussed.

In this paper, a three-dimensional method was developed for modeling the heat transfer of foamed concretes with a large range of densities (300–1700 kg/m3). A random generation method was extended from two dimensions (2D) to three dimensions (3D) for reproducing the microstructure of foamed concrete. A finite volume method (FVM) was then used to solve the energy transport equations for two phase coupled heat transfer through the porous structure. The effective thermal conductivities (ETCs) of foamed concretes were thus numerically calculated and the 3D predictions were compared with the existing experimental data and other analytical models. The numerical results show that the predicted effective thermal conductivity varies with the lattice number in the third dimension following an exponential relationship, and it needs at least 20 lattices along the third dimension to stabilize the simulation results. In addition, the 3D numerical predictions agree more with the experimental results, since the heat conduction in the third direction is omitted in 2D simulation, leading to the underestimation of effective thermal conductivities prediction in the same boundary conditions. Finally, a correlation was then derived between the results computed with 3D and 2D numerical models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Construction and Building Materials - Volume 50, 15 January 2014, Pages 421–431
نویسندگان
, , ,