کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
260150 | 503652 | 2010 | 7 صفحه PDF | دانلود رایگان |

In this study, the mechanical performance of lightweight concrete exposed to high temperature has been modeled using genetic programming. The mixes incorporating 0%, 10%, 20% and 30% silica fumes were prepared. Two different cement contents (400 and 500 kg/m3) were used in this study. After being heated to temperatures of 20 °C, 200 °C, 400 °C and 800 °C, respectively, the compressive and splitting tensile strength of lightweight concrete was tested. Empirical genetic programming based equations for compressive and splitting tensile strength were obtained in terms of temperature (T), cement content (C), silica fume content (SF), pumice aggregate content (A), water/cement ratio (W/C) and super plasticizer content (SP). Proposed genetic programming based equations are observed to be quite accurate as compared to experimental results.
Journal: Construction and Building Materials - Volume 24, Issue 12, December 2010, Pages 2612–2618