کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
271521 504996 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Overview of engineering design, manufacturing and assembly of JT-60SA machine
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Overview of engineering design, manufacturing and assembly of JT-60SA machine
چکیده انگلیسی

The JT-60SA experiment is one of the three projects to be undertaken in Japan as part of the Broader Approach Agreement, conducted jointly by Europe and Japan, and complementing the construction of ITER in Europe. The JT-60SA device is a fully superconducting tokamak capable of confining break-even equivalent deuterium plasmas with equilibria covering high plasma shaping with a low aspect ratio at a maximum plasma current of Ip = 5.5 MA. This makes JT-60SA capable to support and complement ITER in all the major areas of fusion plasma development necessary to decide DEMO reactor construction. After a complex start-up phase due to the necessity to carry out a re-baselining effort with the purpose to fit in the original budget while aiming to retain the machine mission, performance, and experimental flexibility, in 2009 detailed design could start. With the majority of time-critical industrial contracts in place, in 2012, it was possible to establish a credible time plan, and now, the project is progressing on schedule towards the first plasma in March 2019. After careful and focused R&D and qualification tests, the procurement of the major components and plant is now well advanced in manufacturing design and/or fabrication. In the meantime the disassembly of the JT-60U machine has been completed and the engineering of the JT-60SA assembly process has been developed. The actual assembly of JT-60SA started in January 2013 with the installation of the cryostat base. The paper gives an overview of the present status of the engineering design, manufacturing and assembly of the JT-60SA machine.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fusion Engineering and Design - Volume 89, Issues 9–10, October 2014, Pages 2128–2135
نویسندگان
, , , ,