کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
272494 505025 2011 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Heat loads on FTU liquid lithium limiter
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Heat loads on FTU liquid lithium limiter
چکیده انگلیسی

The choice of the best material exposed to the plasma in a future reactor is still an open question. One of main requirements to be satisfied is the capability to withstand high heat loads, in the range 10–20 MW/m2, during normal operations in a future reactor, as well as the peak power released by ELMs in H-mode operation. On FTU, since the end of 2005, we have started an innovative program having as main goal the possibility to expose a liquid surface to the plasma. The small wetted area, of the FTU three liquid lithium limiter units, does not allow to use it as main limiter for all the duration of the discharge so that it is always set in the shadow of the main toroidal limiter. In this condition, heat loads up to 2 MW/m2 are normally withstood by the liquid lithium limiter without any surface damage and problems to the FTU operations. In order to increase the heat load on the liquid lithium limiter for a controlled limited period, the plasma column is shifted towards the liquid lithium limiter during the discharge. The surface temperature remains constant although the plasma column is pushed on the liquid lithium limiter. This saturation of the surface temperature can be understood considering the dependence of the evaporation rate versus the surface temperature between 250 °C and 550 °C that increases by five orders of magnitude. The evaporated lithium forms a strongly radiative cloud all around the three units limiting the power load on the surface. We do not observe any accumulation of lithium into the discharge as it can be also inferred from the time evolution of the Li III line growing up until the temperature is reaching the maximum value and then remaining almost constant.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fusion Engineering and Design - Volume 86, Issues 6–8, October 2011, Pages 580–583
نویسندگان
, , ,