کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
277885 1430256 2013 9 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
On the directional approach in constitutive modelling: A general thermomechanical framework and exact solutions for Mooney–Rivlin type elasticity in each direction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
On the directional approach in constitutive modelling: A general thermomechanical framework and exact solutions for Mooney–Rivlin type elasticity in each direction
چکیده انگلیسی

In order to represent process-induced anisotropies in continuum mechanics or to transfer one-dimensional material models to three spatial dimensions the directional approach is a helpful technique. Since the essential equations are defined in the orientation space it is also denoted as microsphere approach. In the current article, the relation for the directional stress tensor of the second Piola–Kirchhoff type is motivated using the volumetric/isochoric split of the deformation gradient and the Clausius–Duhem inequality. Owing to inherent nonlinearities, numerical discretisation techniques are usually applied to calculate the total stress by averaging the directional stress tensors over the unit sphere. In order to investigate the accuracy of such simulations, the availability of exact solutions in closed form is essential. To this end, the tension/compression behaviour which belongs to a certain direction in the orientation space is modelled by an elasticity relation of the Mooney Rivlin type. The exact solutions are calculated, visualized and discussed for uniaxial tension and compression as well as for equibiaxial tension.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Solids and Structures - Volume 50, Issues 14–15, July 2013, Pages 2518–2526
نویسندگان
, , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت