کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2779188 1568151 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length
ترجمه فارسی عنوان
انتشار کراک در استخوان در مقیاس فیبریل های کلاژن مینرالیزه: نقش پلیمرهای با پیوندهای قربانی و طول پنهان
کلمات کلیدی
پیوندهای قربانی و طول پنهان، فیبرهای کلاژن، سختی، انتشار کراک
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شناسی تکاملی
چکیده انگلیسی


• We model the rate dependent polymeric material with SBHL system.
• Our model primarily focuses on interfibrillar sliding failure mode at micrometer scale.
• SBHL system increases energy dissipation and resists crack propagation.
• Larger polymer density leads to more energy dissipation, increased peak resistance force and higher ductility.
• Low mineralization and high polymer density lead to brittle failure by strain localization within the fibril.

Sacrificial bonds and hidden length (SBHL) in structural molecules provide a mechanism for energy dissipation at the nanoscale. It is hypothesized that their presence leads to greater fracture toughness than what is observed in materials without such features. Here, we investigate this hypothesis using a simplified model of a mineralized collagen fibril sliding on a polymeric interface with SBHL systems. A 1D coarse-grained nonlinear spring-mass system is used to model the fibril. Rate-and-displacement constitutive equations are used to describe the mechanical properties of the polymeric system. The model quantifies how the interface toughness increases as a function of polymer density and number of sacrificial bonds. Other characteristics of the SBHL system, such as the length of hidden loops and the strength of the bonds, are found to influence the results. The model also gives insight into the variations in the mechanical behavior in response to physiological changes, such as the degree of mineralization of the collagen fibril and polymer density in the interfibrillar matrix. The model results provide constraints relevant for bio-mimetic material design and multiscale modeling of fracture in human bone.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bone - Volume 68, November 2014, Pages 20–31
نویسندگان
, ,