کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2779579 1153275 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شناسی تکاملی
پیش نمایش صفحه اول مقاله
The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D
چکیده انگلیسی

The potential for osteogenic differentiation of dental pulp mesenchymal stem cells (DPMSCs) in vitro and in vivo has been well documented in a variety of studies. Previously, we obtained a population of cells from human dental pulp called dental pulp pluripotent stem cells (DPPSCs) that could differentiate into mesodermal, ectodermal and endodermal progenies. We compared the osteogenic capacity of DPPSCs and DPMSCs that had been isolated from the same donors (N = 5) and cultivated in the same osteogenic medium in 3D (three dimensions) Cell Carrier glass scaffolds. We also compared the architecture of bone-like tissue obtained from DPPSCs and human maxillary bone tissue. Differentiation was evaluated by scanning electron microscopy, whereas the expression of bone markers such as ALP, Osteocalcin, COLL1 and Osteonectin was investigated by quantitative real time polymerase chain reaction (qRT-PCR). We also used calcium quantification, Alizarin red staining and alkaline phosphatase (ALP) activity to compare the two cell types. New bone tissue formed by DPPSCs was in perfect continuity with the trabecular host bone structure, and the restored bone network demonstrated high interconnectivity. Significant differences between DPPSCs and DPMSCs were observed for the expression of bone markers, calcium deposition and ALP activity during osteogenic differentiation; these criteria were higher for DPPSCs than DPMSCs. Both DPPSCs and differentiated tissue showed normal chromosomal dosage after being cultured in vitro and analysed using short-chromosome genomic hybridisation (short-CGH). This study demonstrates the stability and potential for the use of DPPSCs in bone tissue engineering applications.


► DPPSCs are capable of producing functional 3D bone-like tissue.
► DPPSCs have more potential of differentiation into bone-like tissue than DPMSCs.
► DPPSCs differentiated into trabecular and cortical bone through 3D glass scaffolding.
► The architecture achieved with DPPSCs resembles human bone structure.
► DPPSCs are genetically stable before and after the differentiation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bone - Volume 50, Issue 4, April 2012, Pages 930–941
نویسندگان
, , , , , , , , , ,