کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2782287 | 1153348 | 2006 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Megakaryocyte-mediated inhibition of osteoclast development
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شناسی تکاملی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We have begun examining the unique inhibitory effect of MK on OC development. Spleen or bone marrow (BM) cells from C57BL/6 mice, as a source of OC precursors, were cultured with M-CSF and RANKL to induce OC development. MK were prepared by culturing fetal liver cells with thrombopoietin and separating cells into MK and non-MK populations. MK were titrated into spleen cell cultures and OC were identified as tartrate-resistant acid phosphatase-positive giant cells with >3 nuclei. There was a significant, P < 0.001, up to 10-fold reduction in OC formed when MK were added to the spleen cell cultures. We determined that 30% (vol:vol) MK conditioned media (CM) were able to completely block OC development from precursors, whereas 3% MK CM resulted in up to a 10-fold reduction in OC development, P < 0.001. These data indicate that a soluble factor(s) was responsible, at least in part, for the inhibition. We examined MK CM for known inhibitors of OC formation, using ELISAs. IL-4 was undetectable in MK CM, whereas IL-10 and IFN-γ levels were similar in MK and non-MK CM. TGFβ-1 levels were increased 2-fold in MK CM compared to control CM but were not responsible for the inhibition in OC development. Although, we found a significant increase in the levels of osteoprotegerin (OPG) in MK CM, antibody neutralization studies, MK derived from OPG-deficient mice, and tandem mass spectrophotometry, all confirm that OPG was not responsible for the MK-mediated inhibition of OC development. Overall, these data suggest that an unidentified factor(s) is present in MK CM that inhibits OC development. These studies indicate that MK can play a dual role in skeletal homeostasis by stimulating OB proliferation and simultaneously inhibiting OC development.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bone - Volume 39, Issue 5, November 2006, Pages 991-999
Journal: Bone - Volume 39, Issue 5, November 2006, Pages 991-999
نویسندگان
Melissa A. Kacena, Tracy Nelson, Mary E. Clough, Sun-Kyeong Lee, Joseph A. Lorenzo, Caren M. Gundberg, Mark C. Horowitz,