کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2792806 | 1155088 | 2012 | 8 صفحه PDF | دانلود رایگان |

SummaryConsidering the explosive increase in obesity worldwide, there must be an unknown mechanism(s) promoting energy accumulation under conditions of overnutrition. We identified a feed-forward mechanism favoring energy storage, originating in hepatic glucokinase (GK) upregulation. High-fat feeding induced hepatic GK upregulation, and hepatic GK overexpression dose-dependently decreased adaptive thermogenesis by downregulating thermogenesis-related genes in brown adipose tissue (BAT). This intertissue (liver-to-BAT) system consists of the afferent vagus from the liver and sympathetic efferents from the medulla and antagonizes anti-obesity effects of leptin on thermogenesis. Furthermore, upregulation of endogenous GK in the liver by high-fat feeding was more marked in obesity-prone than in obesity-resistant strains and was inversely associated with BAT thermogenesis. Hepatic GK overexpression in obesity-resistant mice promoted weight gain, while hepatic GK knockdown in obesity-prone mice attenuated weight gain with increased adaptive thermogenesis. Thus, this intertissue energy-saving system may contribute to determining obesity predisposition.
Graphical AbstractFigure optionsDownload high-quality image (195 K)Download as PowerPoint slideHighlights
► High-fat feeding rapidly upregulates hepatic GK particularly in obesity-prone mice
► Hepatic GK induction suppresses BAT thermogenesis and antagonizes leptin's effects
► This intertissue (liver-to-BAT) thrifty system is mediated by a neuronal pathway
► Hepatic GK induction contributes to determining obesity predisposition
Journal: - Volume 16, Issue 6, 5 December 2012, Pages 825–832