کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
279926 1430364 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Noncanonical Poisson brackets for elastic and micromorphic solids
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
Noncanonical Poisson brackets for elastic and micromorphic solids
چکیده انگلیسی

This paper investigates the Lagrangian-to-Eulerian transformation approach to the construction of noncanonical Poisson brackets for the conservative part of elastic solids and micromorphic elastic solids. The Dirac delta function links Lagrangian canonical variables and Eulerian state variables, producing noncanonical Poisson brackets from the corresponding canonical brackets. Specifying the Hamiltonian functionals generates the evolution equations for these state variables from the Poisson brackets. Different elastic strain tensors, such as the Green deformation tensor, the Cauchy deformation tensor, and the higher-order deformation tensor, are appropriate state variables in Poisson bracket formalism since they are quantities composed of the deformation gradient. This paper also considers deformable directors to comprise the three elastic strain density measures for micromorphic solids. Furthermore, the technique of variable transformation is also discussed when a state variable is not conserved along with the motion of the body.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Solids and Structures - Volume 44, Issue 24, 1 December 2007, Pages 7715–7730
نویسندگان
,