کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
280018 | 1430382 | 2006 | 18 صفحه PDF | دانلود رایگان |

In this paper, the dynamic stability of rotating cylindrical shells under static and periodic axial forces is investigated using a combination of the Ritz method and Bolotin’s first approximation. The kernel particle estimate is employed in hybridized form with harmonic functions, to approximate the 2-D transverse displacement field. A system of Mathieu–Hill equations is obtained through the application of the Ritz energy minimization procedure. The principal instability regions are then obtained via Bolotin’s first approximation. In this formulation, both the hoop tension and Coriolis effects due to the rotation are accounted for. Various boundary conditions are considered, and the present results represent the first instance in which, the effects of boundary conditions for this class of problems, have been reported in open literature. Effects of rotational speeds on the instability regions for different modes are also examined in detail.
Journal: International Journal of Solids and Structures - Volume 43, Issues 25–26, December 2006, Pages 7553–7570