کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
280071 1430348 2008 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strain gradient plasticity analysis of transformation induced plasticity in multiphase steels
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
Strain gradient plasticity analysis of transformation induced plasticity in multiphase steels
چکیده انگلیسی

“To what extent do plastic strain gradients affect the strengthening resulting from the transformation of small metastable inclusions into hard inclusions within a plastically deforming matrix?” is the central question addressed here. Though general in the approach, the focus is on the behavior of TRIP-assisted multiphase steels. A two-dimensional embedded cell model of a simplified microstructure composed of a single metastable austenitic inclusion surrounded by a soft ferritic matrix is considered. The cell is inserted in a large homogenized medium. The transformation of a fraction of the austenite into a hard martensite plate is simulated, accounting for a transformation strain, and leading to complex elastic and plastic accommodation. The size of a transforming plate in real multiphase steels is typically between 0.1 and 2 μm, a range of size in which plastic strain gradient effects are expected to play a major role. The single parameter version of the Fleck–Hutchinson strain gradient plasticity theory is used to describe the plasticity in the austenite, ferrite and martensite phases. The higher order boundary conditions imposed on the plastic flow have a large impact on the predicted strengthening. Using realistic values of the intrinsic length parameter setting the scale at which the gradients effects have an influence leads to a noticeable increase of the strengthening on top of the increase due to the transformation of a volume fraction of the retained austenite. The geometrical parameters such as the volume fraction of retained austenite and of the transforming zone also bring significant strengthening. Strain gradient effects also significantly affect the stress state inside the martensite plate during and after transformation with a potential impact on the damage resistance of these steels.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Solids and Structures - Volume 45, Issue 20, 1 October 2008, Pages 5397–5418
نویسندگان
, , ,