کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
280439 | 1430392 | 2006 | 13 صفحه PDF | دانلود رایگان |

A general method for the study of piece-wise homogeneous strain fields in finite elasticity is proposed. Critical homogeneous deformations, supporting strain jumping, are defined for any anisotropic elastic material under constant Piola–Kirchhoff stress field in three-dimensional elasticity. Since Maxwell’s sets appear in the neighborhood of singularities higher than the fold, the existence of a cusp singularity is a sufficient condition for the emergence of piece-wise constant strain fields. General formulae are derived for the study of any problem without restrictions or fictitious stress–strain laws. The theory is implemented in a simple shearing plane strain problem. Nevertheless, the procedure is valid for any anisotropic material and three-dimensional problems.
Journal: International Journal of Solids and Structures - Volume 43, Issues 11–12, June 2006, Pages 3643–3655