کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2805912 | 1157089 | 2013 | 12 صفحه PDF | دانلود رایگان |

ObjectiveThe β-cell metabolism of glucose and of some other fuels (e.g. α-ketoisocaproate) generates signals triggering and acutely amplifying insulin secretion. As the pathway coupling metabolism with amplification is largely unknown, we aimed to narrow down the putative amplifying signals.Materials/MethodsAn experimental design was used which previously prevented glucose-induced, but not α-ketoisocaproate-induced insulin secretion. Isolated mouse islets were pretreated for one hour with medium devoid of fuels and containing the sulfonylurea glipizide in high concentration which closed all ATP-sensitive K+ channels. This concentration was also applied during the subsequent examination of fuel-induced effects. In perifused or incubated islets, insulin secretion and metabolic parameters were measured.ResultsThe pretreatment decreased the islet ATP/ADP ratio. Whereas glucose and α-ketoisovalerate were ineffective or weakly effective, respectively, when tested separately, their combination strongly enhanced the insulin secretion. Compared with glucose, the strong amplifier α-ketoisocaproate caused less increase in NAD(P)H-fluorescence and less mitochondrial hyperpolarization. Compared with α-ketoisovalerate, α-ketoisocaproate caused greater increase in NAD(P)H-fluorescence and greater mitochondrial hyperpolarization. Neither α-ketoacid anion enhanced the islet ATP/ADP ratio during onset of the insulin secretion. α-Ketoisocaproate induced a higher pyruvate content than glucose, slowly elevated the citrate content which was not changed by glucose and generated a much higher acetoacetate content than other fuels. α-Ketoisovalerate alone or in combination with glucose did not increase the citrate content.ConclusionsIn β-cells, mitochondrial energy generation does not mediate acute metabolic amplification, but mitochondrial production of acetyl-CoA and supplemental acetoacetate supplies cytosolic metabolites which induce the generation of specific amplifying signals.
Journal: Metabolism - Volume 62, Issue 10, October 2013, Pages 1375–1386