| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 2866225 | 1573481 | 2007 | 13 صفحه PDF | دانلود رایگان |
Reactive astrocytes and microglia in Alzheimer's disease surround amyloid plaques and secrete proinflammatory cytokines that affect neuronal function. Relationship between cytokine signaling and amyloid-β peptide (Aβ) accumulation is poorly understood. Thus, we generated a novel Swedish β-amyloid precursor protein mutant (APP) transgenic mouse in which the interferon (IFN)-γ receptor type I was knocked out (APP/GRKO). IFN-γ signaling loss in the APP/GRKO mice reduced gliosis and amyloid plaques at 14 months of age. Aggregated Aβ induced IFN-γ production from co-culture of astrocytes and microglia, and IFN-γ elicited tumor necrosis factor (TNF)-α secretion in wild type (WT) but not GRKO microglia co-cultured with astrocytes. Both IFN-γ and TNF-α enhanced Aβ production from APP-expressing astrocytes and cortical neurons. TNF-α directly stimulated β-site APP-cleaving enzyme (BACE1) expression and enhanced β-processing of APP in astrocytes. The numbers of reactive astrocytes expressing BACE1 were increased in APP compared with APP/GRKO mice in both cortex and hippocampus. IFN-γ and TNF-α activation of WT microglia suppressed Aβ degradation, whereas GRKO microglia had no changes. These results support the idea that glial IFN-γ and TNF-α enhance Aβ deposition through BACE1 expression and suppression of Aβ clearance. Taken together, these observations suggest that proinflammatory cytokines are directly linked to Alzheimer's disease pathogenesis.
Journal: The American Journal of Pathology - Volume 170, Issue 2, February 2007, Pages 680–692