کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2866399 | 1573492 | 2006 | 9 صفحه PDF | دانلود رایگان |

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease resulting from lack of the sarcolemmal protein dystrophin. However, the mechanism leading to the final disease status is not fully understood. Several lines of evidence suggest a role for nuclear factor (NF)-κB in muscle degeneration as well as regeneration in DMD patients and mdx mice. We investigated the effects of blocking NF-κB by inhibition of oxidative stress/lipid peroxidation on the dystrophic process in mdx mice. Five-week-old mdx mice received three times a week for 5 weeks either IRFI-042 (20 mg/kg), a strong antioxidant and lipid peroxidation inhibitor, or its vehicle. IRFI-042 treatment increased forelimb strength (+22%, P < 0.05) and strength normalized to weight (+23%, P < 0.05) and decreased fatigue (−45%, P < 0.05). It also reduced serum creatine kinase levels (P < 0.01) and reduced muscle-conjugated diene content and augmented muscle-reduced glutathione (P < 0.01). IRFI-042 blunted NF-κB DNA-binding activity and tumor necrosis factor-α expression in the dystrophic muscles (P < 0.01), reducing muscle necrosis (P < 0.01) and enhancing regeneration (P < 0.05). Our data suggest that oxidative stress/lipid peroxidation represents one of the mechanisms activating NF-κB and the consequent pathogenetic cascade in mdx muscles. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD.
Journal: The American Journal of Pathology - Volume 168, Issue 3, March 2006, Pages 918–926