کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2892729 | 1574724 | 2012 | 6 صفحه PDF | دانلود رایگان |

Serotonin (5-hydroxytryptamine, 5-HT) plays a crucial role in peripheral artery disease (PAD) and diabetes mellitus (DM). In these conditions, the balance between the 5-HT2A receptor in smooth muscle cells and the 5-HT1B receptor in endothelial cells (ECs) regulates vascular tonus. In the present study, we focused on the role of 5-HT in endothelial dysfunction using a selective 5-HT2A receptor blocker, sarpogrelate.In human EC, 5-HT markedly stimulated eNOS expression and the phosphorylation of eNOS, Akt and ERK1/2. In addition, a dose-dependent increase in tubule-formation on Matrigel was observed after 5-HT treatment. In contrast, high glucose significantly inhibited tubule formation and eNOS expression through inactivation of Akt, while 5-HT significantly attenuated these actions of high glucose (P < 0.01). These results indicate that 5-HT stimulated angiogenesis through activation of Akt in ECs. However, in clinical situations, 5-HT seems to act as the “devil”. To examine the role of 5-HT in diabetic PAD, a hindlimb ischemia model was created in diabetic mice. The blood flow ratio of the ischemic to non-ischemic limb was significantly lower in DM mice than in normal mice, while sarpogrelate significantly attenuated the decrease in the blood flow ratio compared to control (P < 0.01). Consistently, the decrease in eNOS expression and Akt activity in DM mice was significantly attenuated by sarpogrelate.Overall, the present study demonstrated that selective inhibition of 5-HT2A by sarpogrelate significantly restored ischemic limb blood perfusion in a severe diabetic mouse model through stimulation of the eNOS/Akt pathway via the endothelial 5-HT1B receptor. Enhancement of vasodilation and angiogenesis by sarpogrelate might provide a unique treatment for PAD and DM patients.
Journal: Atherosclerosis - Volume 220, Issue 2, February 2012, Pages 337–342